The Role of Cointegration in the Forecast Accuracy of Var Models
نویسنده
چکیده
This paper assesses the forecast performance of a set of VAR models under a growing number of restrictions. With a maximum forecast horizon of 12 years, we show that the farther the horizon is, the more structured and restricted VAR models have to be to produce accurate forecasts. Indeed, unrestricted VAR models, not subjected to integration or cointegration, are poor forecasters for both short and long run horizons. Differenced VAR models, subject to integration, are reliable predictors for one-step horizons but ineffectual for multi-step horizons. Cointegrated VAR models including appropriate structural breaks and exogenous variables, as well as being subjected to over-identifying theory consistent restrictions, are excellent forecasters for both short and long run horizons. Hence, to obtain precise forecasts from VAR models, proper specification and cointegration are crucial for whatever horizons are at stake, while integration is relevant only for short run horizons.
منابع مشابه
Common Factors of CPI Sub-aggregates and Forecast of Inflation
In this paper, we investigate whether incorporating common factors of CPI sub-aggregates into forecasting models increases the accuracy of forecasts of inflation. We extract factors by both static and dynamic factor models and then embed them in ARMA and VAR models. Using quarterly data of Iran’s CPI and its sub-aggregates, the models are estimated over 1990:2 to 2008:2 and out of sample ...
متن کاملImplications of Cointegration for Forecasting: A Review and an Empirical Analysis
Cointegration has different theoretical implications for forecasting. Several empirical studies have compared the out of sample forecasting performance of cointegrted VECMs against unrestricted VARs in levels and in differences. The results of these studies have been generally mixed and inconclusive. This paper provides a comprehensive review over the subject, and also examines the effects...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملForecasting Gold Price using Data Mining Techniques by Considering New Factors
Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کامل